6 research outputs found

    Physical mechanisms of heat, momentum and turbulence fluxes

    Get PDF
    In a qualitative way, the physical mechanisms which generate fluxes of heat, momentum, and turbulence in the atmosphere are discussed. This material is presented to acquaint people with the Earth science aspects of turbulence as important processes in the atmosphere. To attempt to describe turbulent fluxes of heat, momentum, and moisture in precise mathematical detail becomes an intractable problem. It is burdened by an eighth order set of equations involving more variables than equations. It is a closure problem which requires complicated assumptions that are not necessarily always satisfied, variable boundary conditions, and sparse observational data. Therefore, we must approach the problem in a simplified manner to obtain any kind of solution involving the variables of shear, stress, and heat, moisture, and momentum fluxes. There are other problems, of course, in which the inclusion of the planetary boundary layer is extremely important. Air pollution studies, air-sea exchanges, mesoscale models, and so on, must account for the planetary layer in very specific terms. Some of the physical mechanisms that are involved in generating fluxes are described

    Some thoughts on future rain mapping missions (TRMM follow-on)

    Get PDF
    The release of latent heat of condensation is the largest internal energy source of the atmosphere. Latent heating is most significant during the precipitation process. Our knowledge of the distribution of precipitation is poor. It is only well observed within limited areas of the globe. Over the oceans, for example, it is known only to within a factor of two. Thus, there are strong scientific requirements for observations of precipitation from instruments on board a satellite. The Tropical Rainfall Measuring Mission (TRMM) will be the first satellite to measure rainfall with adequate accuracy and provide information about the vertical distribution of precipitation, not only in tropics and subtropics, but to plus or minus 35 degrees of latitude. There is a need for the continuity of rain observations for climate modeling purposes and to expand observations to cover more of the globe than simply plus or minus 35 degrees latitude

    Spacelab 3 Mission Science Review

    Get PDF
    Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science

    Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    Get PDF
    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage
    corecore